
10 essential strategies for a
successful automation project

SUCCESSFUL TEST
AUTOMATION

10 essential strategies for a
successful automation project

Executive Summary

This white paper contains recommendations from test automation experts based on their

years of experience in helping customers realize their quality assurance goals. The recom-

mendations are presented in a step-by-step format that can serve as the outline for

an automation project. As with any project, the decisions made during the planning stages

of a test automation project set the stage for success – or for failure. For this reason, our

experts recommend that organizations take the necessary time to set goals, analyze current

processes, and build the right implementation team prior to launching an automation

project. Our experts also recommend preparing a sample of test cases for automation and

conducting an on-site proof of concept to ensure that the selected tools work as needed

in your environment. The concluding sections of this white paper suggest strategies for

long-term success, to help manage the effort involved in test case maintenance and realize

the highest possible return on your automation investment.

Contents

 1. Analyze your current process.

 2. Create an automation project plan.

 3. Put together the right team.

 4. Prepare a handful of test cases for automation.

 5. Research and select two or three top automation tools for further evaluation.

 6. Do a proof of concept.

 7. Implement the selected automation tool.

 8. Allow time for training and the learning curve.

 9. Begin automating your documented test cases.

10. Periodically review your process and adjust as necessary.

3

1. Analyze your current processes.

Before implementing test automation, determine why you need test automation and whether

your team is ready for it. Perhaps you are looking at automation because the QA process has

become a bottleneck in your release cycle. If the manual test cases in your regression set

take too long to complete by hand, then there is a good chance that automating these test

cases will produce faster results and ease the bottleneck. But, what if the problem is that

QA isn’t able to start testing until late in the development cycle, due to issues with changing

requirements or barriers to communication between the development and QA teams? In

such a scenario, your automation project may not deliver the benefits your team expects.

Assess whether your organization has the right processes in place to realize the benefits of

automation.

Simply put, test automation won’t fix a broken process, especially when the various stake-

holder groups have different expectations of their roles in the software development process.

Larissa Stoiser, Ranorex senior quality engineer, explains:

People sometimes think that test automation will make everything fine. But a team

has to have its workflows in place first, and the staff may benefit from training on the

purpose of testing and the meaning of quality. They have to live a lifestyle of QA. While

important, test automation is just a small part of the larger work of quality software

development.

So, it is important to identify any necessary process improvements as early as possible in

your automation project. Aspects of your process to consider include the team structure, com-

munication, and development methodology. According to a 2017 survey by Ranorex, while a

majority of organizations are using primarily agile development methodologies, a significant

number are using mixed/agile waterfall approaches that often have inherent inefficiencies.

Workflow Training Automation

4

Regardless of whether an organization has committed to a fully DevOps approach to de-

velopment, or is following a more traditional waterfall approach, communication can be

improved by creating smaller, cross-functional teams with stakeholders such as developers,

QA, sysadmins and business representatives working as closely together as possible. But be

sure to create these teams strategically, to allow each team to operate as independently as

possible from other teams with a minimum of overlap. Jason Branham, senior sales engineer

at Ranorex, observes:

Ranorex Survey: Agile vs Waterfall
Development Environment

For more information on the results and

conclusions of this survey, see the Ranorex

white paper “Accelerating Toward Continuous

Testing: 9 Things to Know About Software

Testing on Agile Teams.“

 Primarily Agile (55%)

 Primarily Waterfall (8%)

 Mixed Agile/Waterfall (35%)

 Other (2%)

I’ve seen some medium-sized organizations that separate their overall QA team

into smaller teams that cover certain views or features of the application without

any real strategy. As a result, one feature may have 10 tests while another has 50

tests. So the division of labor is not an automation process, but it has to be done

right. If not, automation will be that much harder for you. Communication is key –

you don’t want people working on the same thing, duplicating their work. The QA

process is integral to being successful with automation. You have to know the scope

of your tests, why you do your tests – all that has to be documented if you want to

have an easy time doing your automation.

5

Typically, determining whether the right thing is being built is a requirements

question: Do you have a good understanding of what it is that you’re trying to achieve

with a specific release or a specific feature? Problems with requirements can occur

in any different number of ways. But typically the root cause is one of communica-

tion, being able to extract what is in the product owner, manager, or stakeholder’s

mind and turn that information into stuff that developers can actually work on.

In his role as a product manager, Knight often works with teams to help create processes that

communicate ideas, concepts, features, and stories more clearly so that developers have

a good understanding of what they’re working on, testers have a good idea of what they’re

testing, and the team as a whole has good understanding of what risks need to be addressed

during the development process and how best to mitigate those risks with clear acceptance

criteria and testing.

Simon Knight, TestRail product manager at Gurock GmbH, describes the importance of

communication in ensuring an effective development process.

In a cross-functional team, stakeholders

meet to discuss requirements from the

perspectives of business analysts, develo-

pers and testers – to ensure that the right

product is being built, and that it is being

built and tested to deliver maximum value

to the user.

6

2. Create an automation project plan.

Depending on the size of your organization, your project plan may simply be an informal

review, or it may be a more formal automation feasibility analysis. Regardless of the project

size, it’s important to identify clear automation goals.

The following questions may be helpful as you think about your goals:

• What is your definition of automated testing?

• What problems are you trying to solve by automating?

• What are the organization’s objectives for the automation project?

• How do your test automation objectives support your overall testing goals?

• How does manual testing fit in with your automation testing plan?

• What is your expectation of test coverage with automation?

Create a definition of “success” for your automation project that is realistic and measurable.

For example, Ranorex customers typically report reductions of 50% or more in the time

required to complete a regression set. So, if your current regression set is taking 16 hours to

complete, a realistic success statement could state: the automation project will be successful

when the regression set is able to be completed within 8 hours. Be sure that your success sta-

tement goes beyond just numbers to identify the true value of the project for your organization.

The value statement for the preceding success statement could be “so that our testers are able

to conduct time-boxed exploratory testing”, or that “so we only expend manual testing

resources when the application is stable, defined as passing the smoke and sanity tests.”

Your project plan should also include your project scope and initial budget. It is also
helpful to include information such as:

• What metrics will be used to track the automation project, such as costs, schedule,

 code coverage, test execution times, number of defects reported?

7

• What are the project deliverables? These could include the project plan itself, a set

 of criteria for selecting a tool, results of tool evaluation, results from proof of concept

 testing, and a body of automated test cases.

• How will the automation project affect other deadlines?

• Where you maintain your centralized repository of test cases?

• Where will the automation team be located? Ideally, the team should be in close

 proximity to encourage collaboration.

• Where and when will training occur?

When developing your project plan, be sure to allow adequate lead time for acquiring any

hardware or software resources that may be needed for the project. Realize that your testers

probably won’t be able to just squeeze in automation tasks alongside their normal sprint

testing activities; instead, treat automation as a development project in its own right. Consider

applying an incremental, iterative approach to managing your test automation project, with

an emphasis on collaboration. Is your development team using a Scrum process? Organize

your automation project that way as well. In your first two-week sprint, for example, you might

have stories with deliverables related analyzing your current processes, creating your project

plan, and identifying team members. The second two-week sprint might have stories related

to preparing manual test cases for automation, researching and selecting tools for further

evaluation, and setting up an environment for conducting a proof of concept. An agile

approach to test automation has the same benefits as for software development: it helps

maximize your chance of success by encouraging collaboration and smaller, more frequent

deliverables, and rapid response to changing requirements.

Finally, once test automation is in place, it will need to be maintained. Ensure that you have

the long-term resources to maintain and execute your automated test cases, and analyze

their results.

Maintain, execute & analyze

2 weeks 4 weeks 6 weeks0

Sprint 2 Sprint 3Sprint 1

Analyze & identify Preparing test cases

8

3. Put together the right team.

Bringing in the right people to your evaluation and implementation team will be critical

to your project’s success. All successful automation projects will involve one or more

champions. While this person does not have to be a test automation engineer, such

champions do often have a relevant background in quality assurance, database, or software

development. The key factor is the desire and ability to help the automation project move

forward. Other essential team members include representatives of all stakeholder groups,

such as one or more developers, testers, business analysts, and sysadmins. This team should

meet on a regular basis to set goals, monitor progress, adjust strategy, and sign-off on the

final solution.

Jason Branham explains the need for a test automation champion:

What we see in practice is that most teams won’t attempt test automation wi-

thout having at least one subject-matter expert on the team, who has some auto-

mation experience in their background. But it’s not a requirement that they have an

automation background because whether you’re a manual tester or a full-blown

automation engineer, you can find a toolset that can work with your talents.”

The test automation champion may be someone internal to your organization, or you may

find it beneficial to bring in an outside consultant. For example, Simon Knight worked for

many years as an external quality assurance consultant, assisting clients to help identify

whether or not the right solution was being built, and whether it was being built right. His

consulting work sometimes involved partnering with an existing testing team to implement

testing functions, or to put in the right processes in place, or to assist with tools to help

automate testing processes.

9

Currently at Ranorex, the development teams have full responsibility for the quality of the

products and features they produce. Stoiser explains:

Likewise, Ranorex used an external consultant to develop its own internal process for quality

management. Larissa Stoiser recalls,

As a software company developing a tool for quality, we were natural-

ly aware that quality is very important. But still, like any rapidly-growing

company, we had some inefficiences in our processes. So we brought in

an external consultant who was very experienced in quality processes. He

helped us to create a quality plan for the entire company. For each depart-

ment, the plan documented their point of view on what product quality

means, and what they expected from a quality plan. The company then agreed on

quality goals for each department for the next year. After the initial year of the quality

plan, we had a follow-up with the consultant to review our processes and make

adjustments where necessary. We found that having an outside expert was very

helpful in developing an optimal quality process. Now, our current process is quite

agile and lean.

It is easier to implement test automation when developers have a quality mindset and are

committed to creating testable code – for example, code that is modular, and that has con-

sistent IDs for UI elements. To help encourage this mindset, allow the team the freedom to

help define roles and responsibilities for the automation project and for maintenance of the

automated tests after the initial implementation. For example, identify who will be respon-

sible for creating and maintaining tests and object repository information. Who will execute

the tests? And who will be the in-house support person for the tool? One of the key benefits

of creating a cross-functional implementation team is to generate a shared commitment to

quality from all members of the team, developers as well as testers.

We have to think about everything: what the customer wants, schedule our time,

and all this freedom and responsibility have the development team very happy.

While the team includes staff with a testing background who primarily do testing,

the developers themselves are also very involved in the testing process. We try tes-

ting as soon as things are there in the code to test. It’s very agile, short feedback

loops, that’s the current process.

10

4. Prepare a handful of test cases for automation.

Manual testing

GRET- SHIRT

Automated testing

create priority list document & design low maintenance e�ortmodular test cases

Develop a priority list of test cases to automate as part of your tool evaluation. Good candi-

dates for this list include smoke tests, build acceptance tests, and high-risk regression tests.

Be sure to include at least one end-to-end test case, to ensure the selected test automation

tool works with your key functionality.

After selecting several pilot test cases, ensure that they are well-documented and well-desi-

gned. It’s common for manual test cases to need additional information to be ready for auto-

mation. For example, a web shopping site may have a test case that describes the expected

behavior of the application when a user places an item in their online shopping cart. The

shopping cart test case may not include preconditions for reaching this point in the appli-

cation, such as logging on or searching for an item. That may be fine for a manual test case

because a tester can interpret the instructions and complete the missing steps. But the steps

must be written explicitly for an automated test case. It is important to document any pre-

conditions for a test case that will be automated, along with the step-by-step instructions to

execute the case, test data values, validations to be performed, cleanup steps needed after

the case completes, and criteria for determining whether the test case was successful.

11

If you do not currently have a method for documenting your test cases, be sure to set up a

template. The template could be a spreadsheet file or a Google form, or you could use a test

management tool like TestRail that can maintain a repository of test cases with precondi-

tions, test data, expected results, and estimated effort.

In addition to preconditions and test data, automated test cases will need rules for error

handling, such as how to respond to unexpected events such as pop-up windows. This is a

separate step from the defect detection function. To save on maintenance, be sure to make

your automated test cases modular – which is often not a key consideration in manual test

case planning. For example, while a manual test for a shopping cart may not include steps

to start the application and log in, an automated test case will need this functionality. But

instead of including the login procedure in each automated case, your team should develop

a single login test case, and then invoke it from other test cases that have this as a prerequi-

site. This type of modular design will reduce your test case maintenance effort.

12

5. Research and select two or three top
automation tools for further evaluation.

When considering automation tools, the primary criteria is the tool’s ability to automate

tests for your particular desktop, web or mobile technology. For example, if you are testing

a web-based application, then the ability to distribute cross-browser tests on a grid may be

important for you. For mobile applications, a solution that can automate tests for Android

and iOS applications on both real devices and on simulators or emulators will be important.

Additional evaluation criteria that are independent of your development technology are

listed below:

Use of a standard, full

programming language vs.

a scripting language

IDE with support

for debugging and

refactoring

Tools to facilitate team

collaboration, including

reusable objects

Support for codeless

automation for use by

non-programmers

Framework support

– modular, data-driven, BDD,

keyword-driven, hybrid

Automation able to be

independent of the AUT,

without jailbreaking

13

If your team includes experienced automation engineers, you can naturally draw on their

prior experience with automation projects or that of other colleagues in the field. It may also

be helpful to read independent reviews of products, either in trade publications, research by

analysts such as Gartner or Forrester, or online at sites such as G2Crowd or Capterra.

Strong UI object

identification

Handle operations

through GUI and/or

backend processes

Flexible licensing options;

such as multi-user licenses or

run-time licenses

Integrations to

other tools

Support for

version control

User-friendly

interface

14

6. Do a proof of concept.

Once you have selected two or three tools for further evaluation, conduct a proof of concept

(PoC). This is a short-term project, typically lasting a few weeks, in which your implementati-

on team will evaluate the leading tools in your environment, and measure the tools against

your evaluation criteria. During the PoC, you will attempt to use each tool to automate the

handful of test cases described in recommendation 4, above. If you are considering one or

more paid tools, contact the vendor’s sales department for assistance in conducting the

proof of concept. The vendor’s pre-sales engineer will typically assist you with obtaining one

or more free evaluation licenses, installing the software on your hardware, and overcoming

any technical obstacles to automating tests for your application.

Jason Branham describes the Ranorex approach to assisting in a PoC:

Following the proof of concept, your team may be prepared to recommend a tool for

adoption or may decide that alternate tools should be considered.

We’re more than just product support. We want to make sure that Ranorex is a

good fit for the customer’s infrastructure, processes, and team. So, we do a multi-

faced analysis. We want to check all the boxes – not just to prove that it works,

but that Ranorex really is the best fit for their needs. So we may do some training

through demonstrations, provide support on the product where something isn’t

working due to issues in their environment, whatever it takes.

15

7. Implement the selected automation tool.

Once you have selected an automation tool, the process of implementing your automated

tests can begin. Set up the test environment and configure any necessary integrations, such

as defect tracking applications, test management solutions, CI/CD servers, and so forth. If

you have chosen a paid solution, ensure that you have the necessary licenses to develop

tests on local machines and execute them on remote servers.

Because test automation is a software development project in its own right, consider using a

source control system such as Git for your test cases. Larissa Stoiser shares Ranorex’s internal

approach:

Our Continuous Integration development process includes Team Foundation

Server (TFS) from Microsoft for work item tracking. Our version control is maintained

via Git in the TFS. Our testing code which is generated from Ranorex also is stored

there. With Git, you have the freedom to easily have each bug fix on a separate

branch, and therefore you are also agile in your testing. One approach is to maintain

the testing source and the Ranorex source code in the same repository to increase

efficiency and have the right tests in place for the right branch.

In addition, ensure that your test environment itself is sufficiently stable to support test

automation. Simon Knight describes what can happen if it isn’t.

I worked with a client who was basically building an application on top of some

other third-party analytics platforms. They had various flavors of off-the-shelf analytic

servers, plus the application that they were building, and various databases

dependent on the application, and other sorts of subsystems as well. Now, the other

systems were peripheral: We weren’t testing the databases and analytics platforms,

just the application they were building. But the environment against which they

were trying to implement automated testing for their application never performed

16

To avoid this, isolate the components of the application under test (AUT) and ensure that

your infrastructure is sufficiently stable and reliable for that testing. Otherwise, your team

may face significant challenges in test automation.

sufficiently to be able to develop automation that was reliable. Things would time

out, for example. There were multiple problems that weren’t related to the applica-

tion itself but entirely related to the environment where all of these systems were

being hosted. It is a complete nightmare when that happens. You spend all your time

trying to figure out if there is a problem with the automation or the environment,

or if there is an actual defect in the application, and it becomes a huge time sink.

17

8. Allow time for training and
the learning curve.

When facing time pressure, it can be tempting to reduce or underestimate the time needed

for training on the new tool. But unless your automation staff is already familiar with the

selected tool, it is important to schedule adequate time for training. Just-in-time testing

will be the most effective approach because your staff will understand the relevance of the

training for their jobs and therefore be more motivated. So, the ideal time to schedule auto-

mation training is immediately before testers are expected to begin producing automated

test cases. Your training plan may include vendor-provided classroom sessions, online

tutorials, or a combination of both.

Hubert Gasparitz, senior sales engineer at Ranorex, provides his experience on test

automation training:

Whether or not training is necessary depends on the team. When you have a

new team that is unfamiliar with automated testing, or you have a new tool, you can

avoid major issues and get your project running easier and faster with training. Even

if your team has experience with another automation tool, training can be benefici-

al. What I’ve seen is that sometimes automation engineers have experience with a

different tool, so they expect the new one to work in the same way as the old one.

That knowledge could be a disadvantage because each automation tool is unique.

You will also need to plan for a learning curve at the start of the project. Even with an easy-to-

use tool like Ranorex Studio, your testers may be less productive at the start of an automa-

tion project as they come up to speed, as shown in the following diagram. The time invest-

ment will pay off in the long run.

18

Learn Basics Deepen Knowledge Create test cases Integration

Project
success

Learning
investment

The Ranorex evaluation process goes through four phases:

Time

Effort

19

Automate where there is a high probability of success.

During the initial phase of implementation, focus on creating high-value

automated tests that are valid (“green”) and stable, so that your testing staff has

a sense of achievement and gains confidence in the automation tool. High-value

tests include those that are painful, repetitive and/or failure-prone when done

manually, and that are relatively easy to automate, such as those with no depen-

dencies to other systems, external services or databases.

Automate where there is maximum potential ROI.

Next on the priority list of automation include your smoke tests, build acceptan-

ce tests, and high-risk regression tests. A quick way to calculate the automation

benefit is to determine which tests will give you the highest ROI to automate, and

what failures may cause the most damage if a defect makes it into production. For

more information on prioritizing test cases according to risk, refer to the section

on prioritizing test cases for risk-based testing in the Ranorex Guide to User

Interface Testing. Other good candidates for automation are tests that require

data entry, cross-platform tests, tests with multiple field validations, and CRUD

(create, retrieve, update, delete) actions. Automate repetitive, tedious scenarios

to free testers to do manual testing of more challenging and difficult-to-automate

scenarios. Look for opportunities to make existing manual tests smarter, such as

making them data-driven.

9. Begin automating your
documented test cases.

With your test automation tool set up in your environment, and the automation team

trained on its use, you are now at the phase in your project where you can begin automa-

ting and executing your documented test cases. Expect that this initial cycle of creating

and executing automated tests will take more time than executing manual tests, but

with each subsequent release cycle, the time to automate and execute your tests will be

reduced. Following are additional recommendations for successful test case automation.

https://www.ranorex.com/resources/testing-wiki/gui-testing/#risk-assessment-matrix

20

Automate for maintainability.

As you automate, be sure to keep your tests independent of each other with

reusable units, modules or methods. Don’t copy and paste test steps between

test cases. Be sure that your automation includes a step to clean up your AUT

after each test.

Be realistic.

Realize that you can’t automate everything. Some tests will require so much

effort to automate that it would be more feasible to conduct them manually.

Jason Branham provides one example: “We recently had a Point of Sale client

that was testing the functionality of their check-out process. They had a manual

test that included swiping a payment card. In their case, it was simpler to physi-

cally swipe a card than to try to automate that functionality. Parts of your testing

scenarios where a user would have to do something manually, such as respond to

a Captcha, prove they’re not a robot—those are put in place to block automation.

You either have to get creative or just decide that this test case is out of scope.”

Part of this is to ensure that you are selecting the right level of automation for

each case. Don’t GUI test an installation, for example, if the same test would be

more efficiently done through unit or integration testing.

Save time by using capture-and-replay features
to create your automated tests quickly.

Jason Branham explains, “Some Ranorex customers code everything by hand in

the IDE. But the record-and-playback feature of Ranorex Studio actually works

really well. You could have your manual test case on your desk, record you test

as you normally would, and by the end of it, you have an automation done by

Ranorex. It may work perfectly, or you may need to enhance the automation with

user code. But this gives you a faster start than coding everything from scratch.”

Encourage developers to create application code that is testable.

For UI testing, this means setting automation IDs. The more structured and

modular your software architecture, the easier your automation team can write

tests for it.

21

Handle test failures.

Just because one test fails in a test run, doesn’t mean that you want all of the

others to fail as well. If your selected tool has them, take advantage of custo-

mizable settings to control the behavior of a test run when one test case fails,

including options to continue with the next iteration of the test case, jump to

the next sibling test case, or stop the run with a failure message. When failures

do occur, don’t immediately assume that the problem is with the applicati-

on. Rather, analyze each failure to determine whether there is an issue with the

automated test case, the environment, or the AUT.

Plan for test case maintenance.

As the AUT changes, incorporate these into your test plan and automate these

new test cases during a maintenance window, such as in the early stage of the

following sprint.

22

10. Periodically review your process and adjust
as necessary.

After the initial phase of implementation is complete, your project team will review the

project metrics and analyze the team’s performance. As part of the project review, assess

the effectiveness of your organization and communications. Consider how your test auto-

mation project has affected the role of testers on the team, and how continued automati-

on may drive additional change.

One of the benefits of a cross-functional team is that it allows your testers to grow in their

understanding of software development, even if they do not become developers. Larissa

Stoiser describes the changes that cross-functional teams have brought to Ranorex:

Our main goal has been to bring QA and Dev closer together and to involve QA

from the very beginning in the development process. Even if they do not become

developers, we encourage our QA staff to at least write test code, do unit testing,

and understand the developers better.

Below are the results of a survey that Ranorex conducted in 2017 on the changing roles

of software testers in agile teams. The first chart shows that about 37% of testers on agile

teams help write user requirements and define acceptance criteria, responsibilities which

typically fall to business analysts in waterfall environments.

The second chart shows development responsibilities of testers on agile teams, with

over 50% responsible for creating automated test cases and 22% working with develo-

pers to conduct unit and interface/API testing. These survey results show how an au-

tomation project in combination with cross-functional teams can help testers develop

from an “I-shape“ team member with deep testing skills, into an even more valuable

“T-shape” team member with both deep skills in testing and broad skills in all aspects of

development.

23

Ranorex Survey: QA/Tester Planning Responsibilites
What planning tasks do testers on agile teams do regularly?

 78% Create test artifacts such as scenarios, cases
 and scripts

 67% Participate in creation of test plans

 65% Identify functional or non-functional areas to test

 51% Set up the test automation framework

 36% Help write testable user requirements

 37% Define acceptance criteria

 22% Participate in risk analysis

Ranorex Survey: QA/Tester Project Responsibilites
What project tasks do testers on agile teams do regularly?

 54% Create automated GUI test cases

 53% Analyze completed tests

 52% Conduct exploratory GUI testing

 50% Document/archive tests for regression testing

 46% Conduct scripted GUI testing

 34% Create post-testing artifacts such as coverage

 22% Work with developers to conduct unit,
 interface/API testing

 11% Coach developers in testing techniques

After the initial implementation phase, it will also be beneficial to review the quality of

your automation. For example, Ranorex offers a project review service for Enterprise

customers for the first three months of their contract.

24

Bernhard Seunig-Karner, Director of Customer Support at Ranorex, explains how the

review works:

Seunig-Karner describes some causes of project inefficiencies.

The customer sends us their Ranorex solution, and gives us input about their

desired solution, which includes describing the AUT, and what the test approach

is, what they want to get out of Ranorex, and what benefit it should bring them.

We look through their automation project for inefficiencies. This is both a human

review and an automated one. The automated review creates a list of potenti-

al issues, and then our engineers analyze the list to verify whether the issue is

genuine or not. After our review, we are able to provide the customer with

feedback on what could be improved to be faster, more stable, provide better test

results, and be more maintainable.

Most of the time, the issues are with the structure of the project. It’s not an issue

unique to Ranorex. Rather, it’s an issue of making the structure easy to maintain by

anyone. For example, having several test modules that do the same task creates

a maintenance issue. Ranorex offers reusable modules to minimize maintenance,

but you have to take advantage of this feature. Another issue that we sometimes

see is with the structure of the object repository. It’s important to maintain the

object identification properly to eliminate redundancy. To avoid this, it’s important

to check your recording modules and the object repository to ensure that UI ele-

ments well-structured and correct, and there is no redundancy. Likewise, you can

have multiple steps in a recording module for what is really a single action. Just like

with your application code, sometimes it’s necessary to refactor your automated

tests for maximum efficiency.

Seunig-Karner’s final recommendation has to do with the amount of detail that your

automated test reports generate. “If you have a test that runs overnight, it might not be

necessary to log every single action into the report. Because then the report becomes huge,

and it could be difficult to open because there is so much data – let alone try to analyze it.

There are settings in Ranorex that allow you to select just the failures in the test run report. If

a module succeeds, then it doesn’t create an entry in the report. This is just one example of

the customization settings that can make a test run report more useful.”

25

Conclusion

To maximize the potential for success, we recommend that you view your test automati-

on project as a distinct effort, separate from development projects. Follow an incremen-

tal, iterative approach to managing your test automation project, with an emphasis on

cross-functional team collaboration. Do a proof of concept to ensure that the selected

automation tool will work in your environment, on your testing platform. Focus on automa-

ting those test cases that will be the easiest to automate, yield stable tests, and give you the

maximum ROI. Following your initial implementation cycle, review your project and process

to identify additional opportunities for improvement. And a final tip: to maximize the return

on your automation investment, consider leveraging your automation tool for other tasks,

such as loading test data for manual tests or monitoring your production environment.

Ready to start your test automation project? Ranorex can help.

Ranorex test automation engineers are ready to assist you in making your automation

project a success. Reach out to our sales team to learn more. Or, if you are ready to conduct

your own proof of concept in-house, download a free trial version of Ranorex today to experi-

ence the power of test automation.

Contributors:

Jason Branham, Sales Engineering Manager, Ranorex Inc. (USA)

Jason has been with Ranorex since 2014, but has been in automation for over 15 years

with experience both in software automation and hardware automation such as relays,

switches, robots. He enjoys working with customers to be successful and realize the dream of

automation.

Hubert Gasparitz, Senior Sales Engineer/Team Lead, Ranorex GmbH (Austria)

As a pre-sales engineer at Ranorex, Hubert assists organizations with automation tool

selection, test automation projects, setting up their test environment, maximizing automa-

tion efficiency. He has a background in electrical engineering, software development, and

economics.

26

Simon Knight, TestRail Product Manager, Gurock Software GmbH

Simon has spent the last 10 years working as a tester, test lead, test manager, test auto-

mation developer, and testing consultant. Currently, he is the TestRail product manager at

Gurock, responsible for defining the TestRail product roadmap and working with the

development team to ensure the delivery of a quality product.

Larissa Stoiser, Senior Quality Engineer and QA Team Lead at Ranorex, GmbH (Austria)

A graduate of the Technical University of Graz with an MS degree in Computational

Mathematics, Larissa leads the Ranorex quality assurance team. She is an ISTQB Certified

Tester and is also a professional photographer.

Bernhard Seunig-Karner, Ranorex, Director of Customer Support

Bernhard has a background as a software developer in both C# and PHP, which he used for

firmware development as well as for his bachelor’s degree project. He worked in software

integration for several companies and hospitals prior to joining Ranorex. Currently, he leads

the customer support team, where he ensures that customers get high-quality support, and

provides guidance on customer needs to the Ranorex development team.

